- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Graham, Nicholas AJ (2)
-
Beguet, Teva (1)
-
Benkwitt, Cassandra E (1)
-
Bistolas, Kalia SI (1)
-
Brandl, Simon J (1)
-
Burkepile, Deron E (1)
-
DeVore, Jayna L (1)
-
Ducatez, Simon (1)
-
Epstein, Hannah E (1)
-
Gómez, Jazmín Prado (1)
-
Harnay, Pierrick (1)
-
Jeannot, Laura-Li (1)
-
Lozano-Peña, Juan Pablo (1)
-
Murphy, Frank (1)
-
Thurber, Rebecca Vega (1)
-
Wedding, Lisa M (1)
-
Wright, Rosalie (1)
-
Zora, Anna (1)
-
Zubia, Mayalen (1)
-
#Tyler Phillips, Kenneth E. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cross-ecosystem nutrient transfer can enhance coral reef functioning in an otherwise oligotrophic environment. While the influence of seabird-derived nutrients on coral reef organisms is increasingly recognized, how they are integrated into reef food webs remains unclear. Cryptobenthic reef fishes are crucial for energy transfer on coral reefs, and their fast life histories imply that they respond strongly to seabird-derived nutrients. Here, we investigate how variation in nearshore seabird nutrient subsidies affects coral reef fish communities. By comparing fish communities across locations differing in seabird nutrient inputs and using stable isotope analysis, we explore nutrient integration across depth, their influence on cryptobenthic and associated larger reef fishes and investigated the relative reliance of cryptobenthic fishes on seabird-enriched benthic and non-enriched pelagic pathways. We find that, near seabird colonies, cryptobenthic fishes’ diets can transition from pelagic to benthic dominance; cryptobenthic fish communities are larger; herbivores and all feeding groups comprising potential cryptobenthic fish predators have higher biomass. Collectively, our results stress the importance of seabirds in shaping energy pathways and suggest that, even in dynamic, ocean-swept reef systems, cryptobenthic fishes can mobilize seabird subsidies and potentially act as a nutritional bridge to higher trophic levels.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Benkwitt, Cassandra E; Bistolas, Kalia SI; DeVore, Jayna L; Ducatez, Simon; Gómez, Jazmín Prado; Wright, Rosalie; Zubia, Mayalen; Harnay, Pierrick; Beguet, Teva; Wedding, Lisa M; et al (, Ecological Indicators)Ecosystems are intrinsically linked, such that management actions in one ecosystem can influence adjacent ecosystems. However, adequate data, and even protocols, for monitoring cross-ecosystem responses to conservation initiatives are lacking. Here, we evaluate potential indicators, operating on different spatial, temporal, and biological scales, for measuring the effects of island-based restoration on coral reef ecosystems. We show that island restoration status had consistent effects on populations of tropical seabirds across spatial scales from 100 m to entire islands. Seabirds, in turn, provided nutrient subsidies that were incorporated by marine algae and coral-reef fishes, with the most pronounced effects closer to shore, at leeward sites, and at low trophic levels. Microbes and macroalgae exhibited assemblage-level responses to seabird-derived nutrients entering the marine environment, but there were few differences in coral reef benthic and fish assemblages. By identifying and focusing on specific indicators such as macroalgal nutrients, managers can better monitor cross-ecosystem responses to conservation interventions with limited resources.more » « lessFree, publicly-accessible full text available January 1, 2026
An official website of the United States government
